Non-Unique Fixed Point Results in Extended B-Metric Space
نویسندگان
چکیده
منابع مشابه
Fixed Point Results on $b$-Metric Space via Picard Sequences and $b$-Simulation Functions
In a recent paper, Khojasteh emph{et al.} [F. Khojasteh, S. Shukla, S. Radenovi'c, A new approach to the study of fixed point theorems via simulation functions, Filomat, 29 (2015), 1189-–1194] presented a new class of simulation functions, say $mathcal{Z}$-contractions, with unifying power over known contractive conditions in the literature. Following this line of research, we extend and ...
متن کاملUnique Fixed Point Theorems In Metric Space
In this paper, we have established unique fixed point theorems in complete metric space and generalized in n-dimensional space. AMS Subject Classification (2010): 10 47H , 25 54H , 50 54E
متن کاملCoupled fixed point results for $alpha$-admissible Mizoguchi-Takahashi contractions in $b$-metric spaces with applications
The aim of this paper is to establish some fixed point theorems for $alpha$-admissible Mizoguchi-Takahashi contractive mappings defined on a ${b}$-metric space which generalize the results of Gordji and Ramezani cite{Roshan6}. As a result, we obtain some coupled fixed point theorems which generalize the results of '{C}iri'{c} {et al.} cite{Ciric3}. We also present an application in order to i...
متن کاملFixed point theory in generalized orthogonal metric space
In this paper, among the other things, we prove the existence and uniqueness theorem of fixed point for mappings on a generalized orthogonal metric space. As a consequence of this, we obtain the existence and uniqueness of fixed point of Cauchy problem for the first order differential equation.
متن کاملSome Fixed Point Results for the Generalized $F$-suzuki Type Contractions in $b$-metric Spaces
Compared with the previous work, the aim of this paper is to introduce the more general concept of the generalized $F$-Suzuki type contraction mappings in $b$-metric spaces, and to establish some fixed point theorems in the setting of $b$-metric spaces. Our main results unify, complement and generalize the previous works in the existing literature.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2018
ISSN: 2227-7390
DOI: 10.3390/math6050068